- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Ingalls, Colin (3)
-
Antieau, Benjamin (1)
-
Assaf, Eran (1)
-
Auel, Asher (1)
-
Chan, Daniel (1)
-
Chan, Kenneth (1)
-
Fretwell, Dan (1)
-
Jabbusch, Kelly (1)
-
Kovács, Sándor J. (1)
-
Krashen, Daniel (1)
-
Kulkarni, Rajesh (1)
-
Lerner, Boris (1)
-
Lieblich, Max (1)
-
Logan, Adam (1)
-
Nanayakkara, Basil (1)
-
Okawa, Shinnosuke (1)
-
Secord, Spencer (1)
-
Van den Bergh, Michel (1)
-
Voight, John (1)
-
de Thanhoffer de Völcsey, Louis (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We consider spaces of modular forms attached to definite orthogonal groups of low even rank and nontrivial level, equipped with Hecke operators defined by Kneser neighbours. After reviewing algorithms to compute with these spaces, we investigate endoscopy using theta series and a theorem of Rallis. Along the way, we exhibit many examples and pose several conjectures. As a first application, we express counts of Kneser neighbours in terms of coefficients of classical or Siegel modular forms, complementing work of Chenevier–Lannes. As a second application, we prove new instances of Eisenstein congruences of Ramanujan and Kurokawa–Mizumoto type.more » « less
-
Chan, Daniel; Chan, Kenneth; de Thanhoffer de Völcsey, Louis; Ingalls, Colin; Jabbusch, Kelly; Kovács, Sándor J.; Kulkarni, Rajesh; Lerner, Boris; Nanayakkara, Basil; Okawa, Shinnosuke; et al (, Mathematische Zeitschrift)
-
Antieau, Benjamin; Auel, Asher; Ingalls, Colin; Krashen, Daniel; Lieblich, Max (, Inventiones mathematicae)
An official website of the United States government
